# Seventh Semester B.E. Degree Examination, Dec.2018/Jan.2019 Computational Fluid Dynamics

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

# Module-1

- a. Derive non conservative form of momentum equation for a infinitesimally small moving fluid element. (10 Marks)
  - b. Explain various physical boundary conditions with suitable examples for CFD problems.

(06 Marks)

OF

2 a. Explain: i) Shock capturing ii) Shock fitting methods.

(08 Marks)

b. Derive the expression for divergence of velocity.

(08 Marks)

# Module-2

3 a. A flow field is identified by the following system of PDE's.

$$\frac{\partial \mathbf{u}}{\partial \mathbf{x}} + \frac{\partial \mathbf{v}}{\partial \mathbf{y}} = 0; \qquad \frac{\partial \mathbf{u}}{\partial \mathbf{y}} - \frac{\partial \mathbf{v}}{\partial \mathbf{x}} = 0$$

Classify the PDE based on Cramer's method.

(10 Marks)

b. Explain unsteady thermal conduction through a semi infinite fluid by writing governing equation and plotting typical solution characteristics. (06 Marks)

OR

4 a. Explain eigen value method for classification of PDE's

(08 Marks)

b. Explain the behaviour of hyperbolic equations and its impact on steady, in viscid supersonic flow field. (08 Marks)

# Module-3

5 a. Explain different types of Grids.

(10 Marks)

b. Explain the factors which determine grid quality.

(06 Marks)

OR

6 a. Explain Adaptive Grids with neat sketch.

(06 Marks)

- b. Explain:
  - i) Multi-block grid generation
  - ii) Advancing front method
  - iii) Delaunay Vornoi diagram.

(10 Marks)

Any revealing of identification, appeal to evaluator and l or equations written eg, 42+8=50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

# Module-4

a. Explain Discretization.
b. Obtain CFL criterion for a first order wave equation.
c. Explain Lax Wendroff technique.
(02 Marks)
(08 Marks)
(06 Marks)

OR

- 8 a. Derive the generic form of governing flow equation with strong conservative form in transformed space for two dimensional unsteady flows with no source term. (10 Marks)
  - b. Explain boundary fitted co-ordinate system for a divergent duct. (06 Marks)

### Module-5

9 a. Derive an expression for flux vector splitting.
b. Explain Upwind scheme. (10 Marks)

#### OR

- 10 a. Explain finite volume discretization for a steady conduction equation:  $\frac{\partial}{\partial x} \left( K \frac{\partial T}{\partial x} \right) + S = 0 \text{ in } 1 d, \text{ where } K \text{ is thermal conductivity and } S \text{ is source term.}$  (08 Marks)
  - b. Explain cell centered technique for spatial Discertization process. (08 Marks)